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In addition to effective field [1-3] and effective medium [4, 5] methods, the differen- 
tial effective medium method (EMM) [6-13] is used in the mechanics of composite materials. 
A comparative analysis of the former two methods was carried out in [2]. Differential EMM 
arose as an alternative to the ambiguous assumptions of EMM, where the value of the effective 
modulus is used as an estimate of the average strain concentration in an isolated inclusion. 
Differential EMM is considered as a process of consecutive additions of the inclusion phase 
in a uniform medium with a modulus equal to the effective modulus of the medium with the 
previous additions of inclusions to the matrix. This process can take place in two ways. 
In the first, it is assumed that the inclusion phase consists of an infinite number of frac- 
tions with infinite size differences, and successive accomodations of the inclusions in the 
corresponding uniform medium leads to ascending order of inclusion size. In the second, in- 
clusions of the initial size are added to the medium in infinitesimal amounts to reach the 
final real concentration. Both methods give equivalent results, since at each interation 
step, the same solution to the single-particle problem is used to estimate the effective 
modulus of the medium with an infinitesimal inclusion concentration. Thus both F/JM [6-12] 
and the effective field method (EFM) [13] are applicable. 

In this work, we do not solve the single-particle problem [6-13], but instead solve the 
multi-particle problem at each iteration step of the differential scheme. To do this we use 
a previously proposed algorithm [i, 3]. In comparisons of calculations with experimental 
data, we show the advantage of the multi-particle differential method over the single-particle 
method. 

i. General Relations. Let the uniform matrix v 0 with tensor properties L(x)= L0(x e v 0) 

contain a random set X = (V k, x k, ~k) (k = i, 2 .... ) of ellipsoids v k with characteristic 

functions Vk, centers Xk, which form a Poisson set, with semi-axes aS ~ (a~ > a~ > a3), the set 
-- -- k 

of Euler angles w k and tensor properties L(x) ~ L 0 + L1(x) = L0 + L1(k)(x) (x e Vk), where 

the tensor Ll(k) is an inhomogeneous function of the coordinates. The concrete sense of the 

tensor L(x) can vary; in transport problems (electrical conductivity, thermal conductivity), 
it is the second-rank tensor of transport coefficients. In elastic problems, by L(x) we 
understand the fourth-rank tensor of elastic moduli. The local equation of state which 
couples the flux density tensor o and the strain field ~ with potential u is taken in the 
form 

~(x) = L(x)~(x), ~(x) = VU(X) (1.1) 

(V is the gradient operator and the symmetrized gradient for scalar and vector potentials u, 
respectively). We are using the standard tensor analysis notation. Substituting (]..i) into 
the equation of equilibrium div o(x) = 0, we obtain a differential equation in terms of the 
potential u. Transforming the latter into integral form, we have [3] 

e(x)=<e>+ [ U (x--y) lV (y)Ll(y)e(y )-<L~e>]dy, V(y)= U Vi(y). (1.2) 
" ~ = 1  

Here U = VVG; G is Green's tensor for the Lame equation of a uniform medium with tensor 
properties L0; <(.)> is the operation of ensemble averaging of the statistically uniform 
ergodic field X. If the set X = (Vk, Xk, m k) is finite (k = 1 .... , n), then for a given 
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strain field e0 at infinity, (1.2) transform to: 

e (x} = e. + y U (x - -  y) V (y) L 1 (y) e (y) dy, V (y) = ~ V~ (y). 
i = l  

(i.3) 

An estimate of the tensor of effective properties.L* in the expression 

(o) L*(~> 

is determined from the averaged local equation of state (i.i) 

(1.4) 

N 

L* = L o + ~ ((R*}~ c~, <L 1 (y) 8 (y) Vi (y)>i ------ R* <~>, ( 1 . 5 )  

where <<(.)i>>m is the operation of averaging over all possible orientations ~i of inclusion 

vi; N is the number of components. The first equation in (1.5) can be rewritten in the form 

L* Lo + ~ * -I = ( { R i A o ) ) ~  co I + o)>~ ; ( 1 . 6 )  
"/=1 

<~>~ = A ~ <a>o, <~>o = Ao <~>, c~ = <V~> (1.7) 

(here <(')>a is the volume average of component a (a = 0, 1 .... , N)). 

To compute R~ (1.5) we introduce ~(VmlX I .... x n) which is the conditional probability 
1 ' ' 

density for the location of the m-th inclusion in the region v m for fixed inclusions v I .... , 

o ' = U 0 (the union over j = I, v n with centers xz, ..., x n. We know that for x mev: ..... m vj ..., 

m), the function %(VmlX I ..... Xn) = 0, and that r l ..... x n) + r m) for Ixi - Xml ~ 

(i = i, ..., n). Here the regions v~ ~ vj (j = 1 ..... n) have characteristic functions 
J 

0 V.. We average (1.2) over the set X for fixed inclusions vl; vl, v2; ... with the help of 
J 

the various conditional density distributions r I ..... xn) (n = i, 2 .... ). We obtain 

an infinite system of coupled integral equations (j = i, ..., n): 

<e (x) I xx> - -  Y U (x - -  y) V 1 @/) <L1 (y) e (y) I xx> dy = 

---- <e> + S U ( x - -  y) [<L~ (y)e (y)ly; x~>-- <Lle>l dy, 

J 
<e (x) lx  ~ . . . .  , zj> --  ~ y U (x - -  y) Vi (y) <L~ (y) e (y) lx, . . . . .  xj> dy = 

= <e> + ~ U (x - -  y) [<L 1 (y) e (y) I Y; xl . . . . .  x i> - -<Lle>]  dy 

(1.8) 

(<'IY; xl, ..., xj> is the conditional average for fixed inclusions with centers at y, xl, 

..., xj and y ~ x I .... , xj). We denote the right-hand side of the j-th (j = i, 2 .... ) line 

of the system by the field $(X)l, .... j, which has the simple physical meaning of a strain field, 

in which are located n fixed inclusions. In this case each inclusion v i from the selected 
fixed inclusions is located in the field 

;~(x) 7(x)~ ..... ~ +  = h~i Y U (x - -  y) Vk (y) LI (y) e (y) dy, x ~ v~. (1.9) 

The strain field inside the inclusion v i depends only on the value of the, generally speaking, 
nonuniform field e i in the region of v i. In order subsequently to omit the dependence of 
~erms in (1.8) on x~ v i, we average each j-th line (j = i, 2 .... ) of (1.8) over the volume 
v i of the i-th inclusion (i = 1 ..... j), so that 

456 



k = l  " ~ " 

" 

. . . .  xj> dy  d x  = <e> + ~-1  U (x y) Vi (x) [<L I (y) e (y)[y; x 1 . . . .  , xj> 

- -  <LI~>] dy d x  

(1.10) 

(<(.)>~__--v71S(.)V~(x)dx is the averaging operation over the volume of the i-th inclusion). Per- 

haps some assumptions can be made concerning the right-hand side of (i.i0), in orde:: to close 
system (i.i0). But in any case, the following steps appear in the solution of the problem 
for a finite number of inclusions (left-hand part of (i.i0)) in the strain field, prescribed 
or determined from self-consistent estimates. 

2. Finite Number of Inclusions in a Uniform Matrix. We solve this auxiliary problem 
for a finite set Xk(Vk, Xk, mk) (k = 1 ..... n) of ellipsoids in a uniform matrix with tensor 

properties L o and a given field <c(x) l .... ,n > at infinity. For an approximate solution to 

the problem, we use one of the MEF hypotheses [1-3], according to which each inclusion v i 

(i = i, ..., n) is located in a uniform field c i. The error incurred with such an assumption 

was estimated in [3] for an elastic problem of a plane with right-angle cuts. Then the right- 
handed side of (i.i0) becomes algebraic for fixed inclusions <e(x)1 ....... )i (x ~ vi): 

. . . . .  (2.1) 

• <51 (y) ~ (y) l~; < . . . . .  ~>~ & @ = <7 (*)1,1 .... >; 

(8(x) )i - -  (U(x )  >i ( L l ( x ) e ( x )  >~ = ~ ( x ) I X l  . . . . .  z~  )i. 

In deriving (2.2), we used the characteristic property of an ellipsoid <U(x)> i = const for 

x~v i [4]. Due to the linearity of problem (2.2), there exists a constant tensor B i such 

that 

(Ri = <U(x)>~ ~ (Bi - I)). 

const 

(P i  = - -  S U ( x  - -  y ) V i ( y ) d y  (x  ~ vi)  

(2.2) 

<e(x) >~ = Bi (7(x)>1 . . . . .  x~ h; ( 2 .  B) 

(L I (X )e ( x ) ) i  = R i  (~(x)[xl . . . . .  Xn >i ( 2 . 4 )  

For example, for a uniform ellipsoidal inclusion v i for LI (i) = 

Bi = (I  + PiL~O) -~, ( 2 . 5 )  

is a constant tensor which does not depend on the physical 

properties and dimensions (nor on the form) of the ellipsoid vi). The tensor Pi can be 

represented in the form Pi = SiL~ I, where the tensor S i is constructed for a sphere, an 

elliptical cylinder, and for oblate and prolate ellipses in problems of elasticity (Eshelby 
tensor) [4] and of conductivity [14]. The tensor B i (2.3) is also known for a two-layered 
spheroid [15, 16]. 

From (1.3) and (2.3) we obtain 

< ~  (X)  ] X 1 . . . . .  Xft>i-- ~ U~ -1 S5 Y (x--z/)Wi(x ) Wj(y)Rj<'8(y)[y; 

x, . . . . .  x~>~ e l e y  = G ( x ) I  ...... >~ , 

( 2 . 6 )  
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which is a system of linear algebraic equations in r It can be solved using the standard 
methods of linear algebra. To do this, we switch from the tensor form of writing (2.6) to 

-~ (m, k = i, , N), in the the matrix form [4]. We form the matrix Z -~ with elements Zmk ... 

form of a submatrix 

Z ~  = I t t , ~  - -  ( t  - -  ~tmk) R m S  (x.~ - -  xh), 

S (xnL - -  xk) = v - ~  1 ~ ~ U (x - -  y) Vm (x) Vh (y) dx dy.  

(2.7) 

Then the solution to (2.6) is written in the form 

R, <~ (x) lx~ . . . . .  x=>~ = ~ z~R~ <; (x)~ . . . . .  .>~.  
j = l  

(2.8) 

The solution to (2.8) can also be constructed using the method of successive approximations 
[i]; so, taking into account the first two iterations 

(2.9) 

3. The Multi-Particle Effective Medium Method. In the single-particle effective medium 
method, it is assumed that the isolated inclusion is located in a uniform matrix with tensor 
properties L = L*(c) ind a given strain field <g> at infinity. Then for L* we obtain the 
implicit equation 

N 

. L* = L o + ~,, <<R~>>~ c~, 
i = l  

~ = <~(x)>c~(~_  ~), ~ = ( ~  + ~ ( L ( x ) _  L,))-I, ~ ~ ~, 

(3.1) 

where the bar over the tensor indicates that it is computed using the fact that the matrix 
properties coincides with those of the effective medium. 

In the proposed variant of multi-particle (n-particle) effective field method, we assume 
that the inclusions are located in a matrix with modulus L* = L*(c) and that a uniform field 
<r acts on each of the n inclusions. The last assumption makes it possible to close system 
(i.i0), which, using the solution for one (2.3) and n inclusions is given in the form (j = i, 
.... n - i, i = 1 ..... j) 

5+1 

Z=1 

- ~ (x~ - x~) <NV>}dx~ <~> 

From the last equation, we determine the effective field <$(x)l,...,n_l> i with an accuracy to 

first order terms in c. We substitute this value into the preceding equation and so forth. 

Thus we obtain a representation for R!~ in the form of a tensor polynomial in c of degree n. 
x 

4. Scheme of the Differential Method. We examine a generalization of a differential 
method scheme [12, 13] in the case of a multi-component filler with complex structure. We 
take the volume v of the composite medium with some finite concentration of inclusions i = 
i, 2, ... (which in general is different from the concentration ci). The composite medium is 
replaced by a uniform volume v with tensor properties L, determined from the equation 
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<o> = L<e>. The infinitesimal discrete volume of the uniform medium is removed and replaced 
by the Sum of the components i = i, 2, .... That is, the representative volume dv i with 
properties L is replaced by the same volume dv i with properties of the i-th component. If 
R~ is the average value of the coefficient of concentration of the polarization tensor 
i 

L (x) - -  L )  

of  e l e m e n t  dv i ,  t h e n  t h e  i n c r e m e n t  t o  t h e  t e n s o r  o f  e f f e c t i v e  p o r p e r t i e s  L can be found  
from ( 1 . 5 )  in  t h e  form 

N 

= - 7 -  >>~" 
i = l  

(4 .1)  

Since it is convenient to carry out the calculation with the additional volume portions dci, 
it can be shown that [12, 13] 

and consequently, 

N 
2 ~vi = % dc 

N 
~ ,  dc >> ( 4 . 2 )  d L = ~ < < R ~  ~. 

i ~ l  

E q u a t i o n  ( 1 . 7 )  i s  an o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  w i t h  r e s p e c t  t o  t h e  unknown t e n s o r  
L with initial conditions L(0) = L0, ci(0) = 0, c(0) = 0 (i = i ..... N) and independent 

variable c (h i = ci/c = const). The basis for (1.7) for uniform inclusions is given in [8], 

and for a single-component filler in [5, 6, i0, Ii]. To close (1.7), it is necessary to 
establish a concrete value for R~", which can be determined on the basis of single-particle 

1 

and multi-particle approaches. 

5. Single-particle Differential Method. In the widely used single-particle differen- 
tial method, it is assumed that the tensor R~[~ is determined from the solution to the problem 

1 

for an isolated inclusion i in a uniform medium with tensor properties L and for a uniform 
field <E> given at infinity. For the postulated equality of R* (1.5) and R i (3.1) (R~'. ' = R.) 

the effective field method is valid. Then the use of Ri (3.1) in the differential equation 
for the effective modulus (4.2) 

R~ = R~ (5 .1)  

is, in its own way, a combination of the single-particle effective medium method and differ- 
ential scheme (4.2) [12, 13]. 

Another version of the single-particle differential method is based on the application 
of the hypothesis of averaged strains of Mori and Tanaka [5, 17], which is a special case 
of the hypothesis of the method of effective fields [2]. It follows from just this defini- 
tion of the tensors A? (i = 0, 1 .... ) (1.7), that the tensor i~? (4.1) can be put in the 
form i 

~: = R: A~ ( CO[ -~ J=l ~ <<cjAY>>~) -I" (5.2) 

In the Mori-Tanaka hypothesis [5, 17, 18], it is assumed that 

A~ =B~, (5.3) 

and to obtain an alternate version of the single-particle differential method, it is sufficient 
to take 

R~A~=R~, (5.4) 
then (4.2), (5.2)-(5.4) form a closed system for calculation of the effective modulus 
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dL = <<Bi>>,o col + <<cjB- ~>>~-1 - ~ k i t  - -c"  (5.5) 
�9 j = l  

Hypothesis (5.3) states that the tensor of the mean strain concentration field <e> i in the 
inclusions with respect to the mean strain field in the matrix <E>a, is independent of the 
filler concentration in a real composite. Relation (5.4) additionally confirms the equality 
of this concentration tensor to the analogous concentration tensor at each step of the 
iteration process involving the addition of an infinitesimal concentration of inclusions 
to the uniform medium with tensor properties L(c). Formula (5.5) is a combination of 
single-particle EFM [2] and the differential scheme (4.2). 

For composite media with a single-component uniform filler, the following relation holds: 

A~ = --7(-~ ~ (L - -  Lo) (L(1) - -  L) -1  " 

By substituting this into (5.5) and using the assumptions (5.3), (5.4), we obtain 

dL/dcl ---- (L (1) -- L)Bi(LO) -- Lo)-I(L(1) -- L)(I  -- cI) -2. ( 5 . 6 )  

6. Multi-Particle Differential Method (combination with EMM). In the version consider- 
ed here, it is assumed that the tensor ~ (4.2) is determined from the averaged solution to 

1 

the problem for n inclusions in a uniform medium with tensor properties L and the field <e> 
given at infinity. Since the addition of component i (i = i, 2, ...) at each iteration step 
of the differential scheme (4.2) is small (Xidc/(l - c) << i), then it can be assumed that 

<g(x)i> i (3.2), and thus R~ as well, can be represented in the form of a power series in the 

small parameter dc/(l - c): 

n - - 1  _ ~--1 

= I I  ( 6 . 1 )  
i~1 i : l  

with ~(~ i = R.. But for each sufficiently smooth function (including for L and R~) there is 
1 1 

a Taylor expansion in powers of dc/(l - c). Then, from (4.2) and a comparison of the coeffi- 

cients of like powers of dc/(l - c) in the corresponding Taylor series and (6.1), we obtain 
a ordinary differential equation of order n 

with initial conditions 

~v ( 6 . 2 )  
d'L/den = E )~('R~n) n!/(l - -  c) n+l 

i=1 

N 

L(~ (0) = Lo, L(1)(O) = R i  . . . .  , L (n-l) (0) = ~ ~ n - 1 ) ( n  - -  i)! 
~=1 

( 6 . 3 )  

7. Multi-Particle Differential Method (combination with EFM). In the proposed method 

(6.2), R~ (4.2) is estimated at each iteration step based on n-particle EFM [i, 3]. It is 

just this solution for one (2.3), (2.4) and a finite number (2.7) of inclusions located in 

effective fields ~(x) and $(x)I ..... n, and also the adopted hypothesis H2 [i, 3] 

(~(x)1 ..... j ..... ~+i>i : ~(x)1 ..... n>~ (]-v ~i, i ~ ] ~ n ,  x~ vi) ), which make it possible to close (I.i0): 

( 7 . 1 )  
j + l  

..... = + [ - . . . . .  E • 
l ~ l  
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• <'~ (x)a ..... j+~}z - -  Si (xi - -  xq) <TfV-~) I dxq, 

n.)~-- 

- -  ~ , . ; .  (Xi - -  Xq) <-~V'~l> } dxq 

( j  = 1 . . . . .  n ,  i = 1 . . . .  , j ) .  On t h e  r i g h t - h a n d  s i d e  o f  t h e  l a s t  e q u a t i o n  i n  ( 7 . 1 ) ,  t h e  
tensor <~i .... ,n > is formed from the tensor <~i .... ,n > on the left-hand side by replacing 

one of the indices by q. System (7.1) is a linear system of integral equations with respect 

to <$(x) I ..... j>s (j = 1 ..... n, ~ = 1 ..... j). In this system, each line j with 

<~(x)l ..... j>i on the left-hand side is made up of j equations, since i = 1 ..... j. We 

estimate <~(x) I .... n>i (i = 1 ..... n) from the final line in (7.1) by the method t f 

successive approximations for all possible positions of the inclusions vl, . .., v n, and then 

substitute this into the right-hand side of line n - I, and so on. The estimate <~(x~> l 

(7.1) makes it possible to determine R*. (1.5) and A0, A. ~ (1.7). Unlike (6.1) in these 
l 1 ' 

relations it has not been assumed that the inclusion concentration is infinitesimal. 

We can find an explicit anaiytical solution to this problem, if we limit the problem 
to a two-particle approximation and assume that 

<7(x)~ )~ = ( 7 ( x 3 )  = c o n s t  (i = t ,  2) .  

Then from the first equation in (7.1) we have 

2 

l~{ ,q  

System (7.2) is a linear algebraic system and is solved for an arbitrary number of components 
with the assumption that the inclusions relate to the different components, if they have 
different physical properties, dimensions and orientations. The number of unknowns can be 
significantly reduced if it is assumed that s i is independent of ~i" Then averaging (7.2), 
with certain obvious assumptions, we obtain 

N 

= E (7-% (7.3) 
j=1 

where the matrix ~-~ has an inverse with elements in the form of a submatrix 

( 7 . 4 )  

From (1.7) and (7.3) we determine the tensors A0, ~a : 
l 

/=1 j=l 
N 

- - 0  A, = B{ ((R~))21 E (~-1)ij ~j))o Ao x. 

I n  t h e  c a s e  o f  t h e  " q u a s i c r y s t a l l i n e "  a p p r o x i m a t i o n  [2 ]  

Zij  : ISi j ,  

(7.5) 

( 7 . 6 )  
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where the single-particle method of effective fields is equivalent to the Mori-Tanaka-Eshelby 
method [2] and (5.3) holds for A~ expression (7.4) simplifies: 

- -  ~ ) m  cj} V (xj; xi) dxj. 

(7.7) 

Substituting (7.3) into (1.5), we arrive at an expression for the effective modulus as de- 
fined by  t h e  m u l t i - p a r t i c l e  e f f e c t i v e  f i e l d  m e t h o d  

N 

L* = L o + E ci(Y-1)~J (Ri}~,  ( 7 . 8 )  
i,j=l . 

where the tensors Y, Rj are computed, taking into account the equality of the tensor of the 
properties of the matrix and the tensor L0. 

We return to the multi-particle differential EFM in the framework of the scheme for the 
single-particle method (5.5). According to (7.5), generally speaking, it is not correct to 
dismiss as unnecessary the Mori-Tanaka hypothesis (5.3), for multi-particle calculation of 
interacting inclusions. To close (5.2), we must adopt hypothesis (5.4) (or its equivalent), 
and then switch to an equation analogous to (5.5). It is not possible to draw a strictly 
similar conclusion for the multi-particle differential EFM, since in using the subsequent ex- 
pression A~ i (7.5) (and in particular, in (2.5)), a finite inclusion concentration was 
assumed, although the differential scheme (4.2) is based on infinitesimal additions of the 
inclusion phase at each iteration step. It is as a result of this contradiction in that 
there appears in (5.6) an "excess" factor (L(l) - L0)-I(L(l) - L)(I - c) -I 

This difficulty can be circumvented by assuming that system (7.1), which describes 
the interaction of n inclusions in the composite medium, is valid for an infinitesimal con- 
centration of the component i (i = i ...... N), equal to ~idc/(l - c). This makes it possible 
to expand <$(x)1>l (7.1) and consequently, R* i (1.5) as well, in an infinite power series in 
the small parameter dc/(l -- c): 

= - ( 7 . 9  ) 
h=O 

Unlike (6.1), series (7.9) is infinite even for the n-particle version of EFM (7.1). Compar- 
ing (7.9) with the formal Taylor expansion of the tensor R*. in terms of dc/(l - c), we find 
from (4.2) I 

dmL/dcm= ~ R~m)m!/(l __c) T M  
i=l ' (7.10) 

with Cauchy conditions 

L (~ (0) = L o, L (1) (0) = Ri . . . . .  L (~-~) (0) = R~ ~ -O  (m - -  l)! 

In general, the order of (7.10) is larger than the number of interacting inclusions (m ~ n). 
For m = n > 2, the estimates made using the differential methods EMM (6.2) and EFM (7.10) are 
different. 

8. Example. We examine a linear-elastic problem for a composite medium with an incom- 
pressible isotropic matrix, filled with rigid spherical inclusions of one size (N = i). Then, 
from (2.4) and (7.4), we have [I] 

-- 5 
R I = ~ ~, )rll = 1--31c/16 (8.1) 

(p is the shear component of the isotropic tensor L). In deriving the second equation in 
(8.1) we applied the approximation for matrix Zij (2.9) with S(x i - xj) = U(x i - xj), ~(vj[xj; 

O 
x i) = ~(vj) = nj for xj~v~ . We obtain the following relations for the effective shear modu- 

lus of the composite p* as a function of the shear modulus of the matrix go: 
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o 

5- 

3- 

I 

Fig. i 

P~* = ~o(t - -  5c/2)-1; 

~* = }xo(l + 3c/2)(t  c)-% 

V* = ao{ l  - -  5c(1 + 3tc/16)/2}-% 

~* = ~ o ( 1  - -  c ) - 5 / 2 .  

( 8 . 2 )  

( 8 . 3 )  

( 8 . 4 )  

( 8 . 5 )  

Formula (8.2) is determined using single-particle EMM (3.1); (8.3) is determined using single- 
particle EFM (7.7), (7.8). Formula (8.4) is from two-particle EMM (3.2); and (8.5) is from 
single-particle differential method EMM (4.2), (5.1). The differential equation 

d2~ ~55 
= ~ ~t (t - -  c) -2 ,  

d c  ~ 

( 8 . 6 )  

5 
(0) = ~o, ~t (~ (0) = ~- ~o 

corresponds to two-particle differential EMM (6.2) and EFM (7.10) with m = 2 (7.10), while the 
equation 

/3i~ 2 5 i55 
dS~/dc ~ = 15 ~ j  ~ ( t  - -  c) - s ,  ~ (0) = ~o, ~(~)(0) = ~ ~o, ~(~)(0) = -~- Po 

corresponds to two-particle differential EFM (7.10) with m = 3. Figure i shows the experi- 
mental data (points) [19], and curves 1-5, computed from Eqs. (8.2), (7.10) with m = 30, 
(8.6), (8.5), and (8.3), respectively. It is clear that taking the binary interaction of 
the inclusions into account can raise the accuracy of the differential methods. 
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EQUILIBRIUM AND STABILITY OF A NONLINEAR-ELASTIC 

PLATE WITH A TAPERED DISCLINATION 

M. I. Karyakin UDC 539.3 

In solid-state physics, it is important to study dislocations and disclinations in two- 
dimensional bodies (plates, films, and so forth), as well as in three-dimensional bodies. 
Methods of analyzing such problems and specific solutions are given, for example, in [1-3]. 
One of these defects arises in the study, introduced in [4], of a tapered disclination, a 
stress-strain state in a cylinder which is made up of a large number of thin disks which con- 
tain disclinations. In this case, the disks do not remain plane, but are transformed into 
either conical funnels or complex curved surfaces with a saddle-shaped configurations. These 
were observed in numerical simulation of disclinations using molecular dynamics methods [4]. 
This has generated interest in the study of similar models using the methods of elasticity 
theory. The linear theory of dislocations in shells is explained in [5], and its nonlinear 
aspects, in [6]. 

In this work, the problem of equilibrium and stability of a nonlinear-elastic plate with 
tapered disclinations is studied. The analysis is based on nonlinear equations of the theory 
of Love plates and shells, formulated in [7]. In the framework of momentless theory, it is 
established that in the case of positive disclination, two axisymmetric equilibrium shapes 
are possible: equilibrium plane or conic surfaces. A nonaxisymmetric nonplane equilibrium 
form for the momentless plate with negative discilination is determined. The equilibrium 
equations of nonlinear momentum theory admit a "plane" solution (deflection identically equa 1 
to zero) for all values of the disclination parameter, which coincides with the solution 
from momentless theory. A numerical investigation of its stability has been done. 

i. We consider a plate of thickness h, having the form of a ring c i r ! d, 0 J ~ i 2~, 

-h/2 ! ~ i h/2 (r, 9, ~ are cylindrical coordinates). We adopt the Kirchoff-Lovehypothesis, 
and further, by plate, we will understand its average surface. The formation of a disclina- 
tion in the plates is given by the relations 
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